Abstract

A typical one-dimensional (1D) van der Waals (vdW) heterostructure consists of single-walled carbon nanotubes (SWCNT), boron nitride nanotube (BNNT), and molybdenum disulfide nanotube (MoS2NT), can be grown coaxially by successive chemical vapor deposition (CVD) steps [1]. The coaxially nested structure based on SWCNTs can expand the board application possibilities of 1D vdW heterostructures [2]. Semiconductor SWCNT wrapped with BNNT can be regarded as the ideal building blocks of field-effect transistors (FET) [3]. We have demonstrated the radial semiconductor–insulator–semiconductor (S-I-S) tunneling heterojunction diode by using a micrometer long 1D vdW heterostructure SWCNT@BNNT@MoS2NT [4]. By comparing optical properties of films of BNNT@MoS2NT and SWCNT@BNNT@MoS2NT, we found strong photoluminescence (PL) from monolayer MoS2NT and quenching of PL by coupling to SWCNT through thin BNNT [5]. The remarkable population of free charges and inter-tube excitons are demonstrated by ultrafast optical spectroscopy [6]. The inter-tube excition is regarded as the inter-layer excition for 2D heterostructures. Precise control of the chemical vapor deposition (CVD) process of each layer is essential since the mechanical exfoliation & stacking technique for 2D counterpart is not possible for 1D vdW heterostructures. The surprisingly sharp edge of BNNT grown on SWCNT is the signature of preference of nitrogen terminated zig-zag edge of h-BN common to 2D counterpart [7]. The next challenge is the CVD growth of various transition metal dichalcogenides on BNNTs. In addition to MoS2 nanotubes [1], we will discuss the growth control of WS2 nanotubes and NbS2 nanotubes. A general strategy we can tune the CVD condition from 2D flake to 1D tube is proposed [8]. Part of this work was supported by JSPS KAKENHI Grant Number JP20H00220, and by JST, CREST Grant Number JPMJCR20B5, Japan.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call