Abstract

Impaired fertility during periods of heat stress is the culmination of numerous physiological responses to heat stress, ranging from reduced estrus expression and altered follicular function to early embryonic death. Furthermore, heat-stressed dairy cattle exhibit a unique metabolic status that likely contributes to the observed reduction in fertility. An understanding of this unique physiological response can be used as a basis for improving cow management strategies, thereby reducing the negative effects of heat stress on reproduction. Potential opportunities for improving the management of dairy cattle during heat stress vary greatly and include feed additives, targeted cooling, genetic selection, embryo transfer and, potentially, crossbreeding. Previous studies indicate that dietary interventions such as melatonin and chromium supplementation could alleviate some of the detrimental effects of heat stress on fertility, and that factors involved in the methionine cycle would likely do the same. These supplements, particularly chromium, may improve reproductive performance during heat stress by alleviating insulin-mediated damage to the follicle and its enclosed cumulus-oocyte complex. Beyond feed additives, some of the simplest, yet most effective strategies involve altering the timing of feeding and cooling to take advantage of comparatively low nighttime temperatures. Likewise, expansion of cooling systems to include breeding-age heifers and dry cows has significant benefits for dams and their offspring. More complicated but promising strategies involve the calculation of breeding values for thermotolerance, the identification of genomic markers for heat tolerance, and the development of bedding-based conductive cooling systems. Unfortunately, no single approach can completely rescue the fertility of lactating dairy cows during heat stress. That said, region-appropriate combinations of strategies can improve reproductive measures to reasonable levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call