Abstract

Automatic milking systems (AMS), first introduced on dairy farms in the 1990s, rapidly spread across many countries. This technology is based on the voluntary milking of dairy cattle in a completely automated process, which relies on computer management, with a substantial average increase in milking frequency. Compared with conventional milking, AMS significantly alters herd management, with important implications on economic, technical, and social aspects of farming, on animal physiology, health, and well-being. These aspects are explored in an extensive body of research. In contrast, the effects of AMS adoption on milk quality are often overlooked. This review draws together both positive and negative effects of AMS on the milk production chain, particularly emphasizing the variations of hygienic and compositive characteristics of raw milk and their interplay, as compared with milk obtained with conventional milking. Scattered and sometimes conflicting literature exists on whether and how these variations may influence quality and yield of the derived dairy products. Current scientific knowledge on these crucial aspects is thus reviewed, with particular focus on milk technological suitability for being processed into dairy products having the target characteristics in terms of taste, structure, on-storage stability, and sustainability. Provided the managing conditions are optimized, AMS allow increased milk production, mostly due to more frequent milking, without compromising the milk characteristics that are crucial to food industry for processing. Nevertheless, specific biochemical aspects related to the changed milking interval, which determines the duration of enzyme activities and bacterial growth in milk, need further research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.