Abstract

Photodissociation studies in molecular beams that employ position-sensitive particle detection to map product recoil velocities emerged thirty years ago and continue to evolve with new laser and detector technologies. These powerful methods allow application of tunable laser detection of single product quantum states, simultaneous measurement of velocity and angular momentum polarization, measurement of joint product state distributions for the detected and undetected products, coincident detection of multiple product channels, and application to radicals and ions as well as closed-shell molecules. These studies have permitted deep investigation of photochemical dynamics for a broad range of systems, revealed new reaction mechanisms, and addressed problems of practical importance in atmospheric, combustion, and interstellar chemistry. This review presents an historical overview, a detailed technical account of the range of methods employed, and selected experimental highlights illustrating the capabilities of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.