Abstract
The ability of Li-ion batteries (LIBs) to provide portable high-density energy sources with outstanding cycle life has led to their deployment in recent electric vehicles (EVs). For wider consumer acceptance of EVs, however, the current state-of-the-art LIBs face formidable technological challenges, including concerns related to the battery cost, durability, and driving range. Resolving these hurdles requires substantial improvements in energy density, cycle life, and safety of current LIBs. Compared to the most widely accepted anode, graphite, cathodes suffer from inferior capacity, poor cycle life, thermal characteristics, and high cost. As a result, high-energy cathodes enabling a long cycle life and reliable safety need to be developed. Among them, a compositionally graded cathode material in which concentrations of the transition metals continuously varied from the particle center to the surface appears to be the most promising since the graded cathodes have demonstrated remarkable improvements over cathodes with single uniform composition, not only in lifetime and safety, but also in battery power due to the superior Li+ diffusion kinetics. In this presentation, we review the most recent and promising results concerning Li[Ni1-x-yCoxAly]O2 (NCA) and Li[Ni1-x-yCoxMny]O2 (NCM) cathodes. One example, concentration gradient Li[Ni0.9Co0.05Mn0.05]O2 cathode delivers a discharge capacity of 229 mAh g-1 and exhibits capacity retention of 88% after 1000 cycles in a pouch-type full cell (compared to 68% for the conventional NCM cathode). The proposed concentration gradient cathodes provide an opportunity for the rational design and development of a wide range of multifunctional cathodes, especially for Ni-rich NCM cathodes, by compositionally partitioning the cathode particles and thus optimizing the microstructural response to the internal strain produced in the deeply charged state.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.