Abstract
Electric dipole layer formation at high-k/SiO2 interface is reproduced by classical molecular dynamics simulation based on a simple two-body rigid ion model (1). The dipole layer was spontaneously formed by the migration of oxygen ions across the high-k/SiO2 interface. In case of Al2O3/SiO2, a part of oxygen ions of Al2O3 penetrated into the SiO2 side, resulting in the formation of a built-in potential of about 0.5 V. The opposite migration of oxygen ions, from SiO2 side to high-k oxide side, is also reproduced by using different potential parameters of ionic radius and effective charge. The simulation result suggests that the dipole is not merely formed by the oxygen density difference. Rather, oxygen ions are driven by some interatomic forces at the interface. We discuss the origin of the driving force of the oxygen migration in terms of the multipole moments around cations in the oxides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.