Abstract

Single-walled carbon nanotubes have been a candidate for outperforming silicon in ultrascaled transistors, but the realization of nanotube-based integrated circuits requires dense arrays of purely semiconducting species. In order to directly growth such nanotube arrays on wafers, control over kinetics and thermodynamics in tube-catalyst systems plays a key role, and further progress requires the comprehensive understanding of seemingly contradictory reports on the growth kinetics. Here, we propose a universal kinetic model that decomposes the growth rates of nanotubes into the adsorption and removal of carbon atoms on the catalysts, and provide its quantitative verification by ethanol-based isotope labeling experiments. While the removal of carbon from catalysts dominates the growth kinetics under a low supply of precursors, our kinetic model and experiments demonstrate that chiral angle-dependent growth rates emerge when sufficient amounts of carbon and etching agents are co-supplied. The kinetic maps, as a product of generalizing the model, include several kinetic selectivities that emerge depending on the balance of gases with opposing effects. Our findings not only resolve discrepancies existing in literature, but also offer rational strategies to control chirality, length, and density of nanotube arrays for practical applications. Part of this work was supported by JSPS (KAKENHI JP20K15137, JP20H00220) and JST (CREST JPMJCR20B5).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call