Abstract

Fully solution-processed amorphous InZnO (a-IZO) thin-film transistors (TFTs) were demonstrated utilizing solution-based channel, gate insulator, and electrodes with a maximum fabrication temperature of 300°C. Particularly, a single layer of a-IZO was used as both the channel and the source/drain electrode layer by selectively tuning the role of a-IZO as a semiconductor or a conductor through photo-assisted treatments. By employing a self-aligned TFT structure, the a-IZO electrodes were functionalized by UV irradiation and excimer laser annealing (ELA). The fully solution-processed a-IZO TFTs exhibited high performance with an average mobility of up to 38 cm2 V-1 s-1, which surpasses those of previously reported approaches for fully solution-processed oxide TFTs. Moreover, the overall device performance, including subthreshold swing of 225 mV dec-1 and on-voltage of -0.4 V, is comparable to those of vacuum-processed oxide TFTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.