Abstract

As a member of the III-nitride wide bandgap semiconductor family, BN has received much less attention in comparison with other nitride semiconductors. The stable phase of BN synthesized at any temperature under ambient pressure is hexagonal. Due to its wide bandgap (> 6 eV) and layered structure, hexagonal BN (h-BN) is an ideal platform for probing fundamental 2D properties of wide bandgap semiconductors. In this talk, a brief overview of the synthesis and electrical and optical properties of wafer-scale h-BN epilayers will be presented [1-7]. It was shown that the unique 2D structure of h-BN induces exceptionally high density of states, large exciton binding energy and high optical absorption and emission intensity. By growing h-BN under high V/III ratios, epilayers exhibiting pure free exciton emission have been obtained [4]. Photocurrent excitation spectroscopy results directly provided a room temperature bandgap value for h-BN in between 6.4 and 6.5 eV and the free exciton binding energy (Ex) of 0.73 eV [5]. Layer-structured B-rich BGaN alloys, heterostructures, and quantum wells have also been successfully grown and their properties will be discussed. Thermal neutron detectors fabricated from 100% B-10 enriched h-BN epilayers of thicknesses exceeding 50 mm have attained the highest detection efficiency to date among solid-state detectors at about 58% [6, 7]. These solid-state neutron detectors have become increasingly desirable for a wide range of applications from fissile materials sensing to well logging, because 3He gas detectors are inherently bulky, require high pressurization and high voltage application, slow response time, and expensive. It is our belief that h-BN will lead to many potential applications from deep UV optoelectronics, radiation detectors, to novel layered-structured photonic and electronic devices. [1] R. Dahal, J. Li, S. Majety, B.N. Pantha, X. K. Cao, J. Y. Lin, and H.X. Jiang, Appl. Phys. Lett. 98, 211110 (2011). [2] S. Majety, J. Li, X. K. Cao, R. Dahal, B. N. Pantha, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 100, 061121 (2012). [3] H. X. Jiang, and J. Y. Lin, Semicon. Sci. Technol. 29, 084003 (2014). [4] X. Z. Du, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 106, 021110 (2015); 108, 052106 (2016). [5] T. C. Doan, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 109, 122101 (2016). [6] A. Maity, T. C. Doan, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 109, 072101 (2016). [7] A. Maity, S. J. Grenadier, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 111, 033507 (2017) and J. Appl. Phys. 123, 044501 (2018).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call