Abstract

A Sagnac loop-based fiber sensor has been built using a special MgO-based nanoparticle doped fiber. The fiber presents a backscattering of 39.5 dB higher with respect to a standard SMF-28 telecom fiber. The backscattering properties of the fiber, combined with a locally stable polarization pattern, have fostered a clear interferometer pattern in middle point of the loop, presenting a backscattering peak roughly 78 dB higher with respect to a standard SMF-28 telecom fiber. The interferometer spectrum, showing a noisy nature given by the presence of the NP-doped fiber element, is clearly detectable. The loop-based sensor has been investigated by changing temperature and strain. The interferometer spectrum shows a shift, detectable with peak tracking and/or correlation method, toward the longer wavelength when temperature and applied strain increase. The measured coefficient of temperature and strain are respectively 1.75 p.m./°C and 1.93 p.m./με. This system shows interesting perspective for combining different optical fiber devices, in order to achieve simultaneous detection and discrimination of temperature and strain.

Highlights

  • HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not

  • Fiber loop resonator sensor achieved by highscattering MgO nanoparticle-doped fibers

  • The documents may come from teaching and research institutions in France or abroad, or from public or private research centers

Read more

Summary

Introduction

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.