Abstract

Polycrystalline silicon nanowires (poly-SiNWs) are synthesized using sidewall spacer top-down method and classical photolithography techniques. This low-temperature (≤ 600°C) fabrication process is a low cost and fully compatible with planar complementary metal oxide semiconductor (CMOS) silicon technology. Independent biasing of each gate allows a possible threshold voltage control of the bottom gate transistors (BGT) and top gate transistors (TGT). Moreover, a new gate architecture passing from 2D to 3D, surrounding-gate transistors, called Gate-All-Around (GAA) where the gate circles the nanowire channel, allows a better electrostatic gate control. Numerical modeling of dual-gate structure and simulations are performed to estimate electrons and holes concentrations in the nanowire used as active layer versus applied gate voltages. Electrical performances of top and bottom-gate transistors are analyzed highlighting oxide-semiconducting nanowire interfaces difference in top and bottom gate configurations. Finally, GAA transistors characterization show that top channel conduction dominates when bias is applied on the surrounding gate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.