Abstract

Due to its high operating voltage and cobalt-free chemistry, the spinel-type LiNi0.5Mn1.5O4 (LNMO) cathode material has attracted great interest as one of the few next-generation candidates capable of addressing this combination of challenges. However, severe capacity degradation and poor interphase stability have thus far impeded the practical application of LNMO. In this study, by leveraging a dry electrode coating process, we demonstrate LNMO electrodes with stable full cell operation and ultra-high loading. This excellent cycling stability is ascribed to a stable cathode-electrolyte interphase for charge transfer and ion transport, a highly distributed and interconnected electronic percolation network, and robust mechanical properties. High-quality images collected using plasma focused ion beam scanning electron microscopy (PFIB-SEM) provide additional insight into this behavior, with a complementary 2-D model illustrating how the electronic percolation network in the dry-coated electrodes more efficiently supports homogeneous electrochemical reaction pathways. These results strongly motivate that LNMO as a high voltage cobalt-free cathode chemistry combined with an energy-efficient dry electrode coating process opens the possibility for sustainable electrode manufacturing of cost-effective and high-energy-density cathode materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call