Abstract

Pt-based nanocatalysts have played important roles in PEMFC due to their high activity and chemical stability. Owing to the large surface to volume ratio at nanoscale slight changes in the surface structure of catalytic materials can have large impacts on the catalytic stability and activity. The composition, facet, and the topology of the top surface layers of a nanocatalyst eventually determine its performance in catalytic reactions. In this presentation, I will share our recent efforts on designing the surface compositions, structures and the overall morphology of noble metal catalysts to improve both catalytic activity and stability of nanocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.