Abstract

Fast scan cyclic voltammetry (FSCV) and carbon-fiber microelectrodes (CFMEs) have been utilized used to detect several important neurochemicals in vivo. However, this method is limited due to the ability to discriminate dopamine from several of its metabolites. Carbon nanotube and polymer modified microelectrodes will be utilized to detect physiologically low levels of neurotransmitters that also resist surface fouling and have high temporal resolution to detect fast changes of neurotransmitters. Furthermore, novel electrode coatings and waveforms will also be utilized to detect several neurotransmitter metabolites such as dopamine, norepinephrine, normetanephrine, 3-methoxytyramine (3-MT), homovanillic acid (HVA), 3,4 dihydroxyphenylacetic acid (DOPAC), and other metabolites. Currently, dopamine is thought to be an important neurotransmitter concerning several disease states such Parkinson’s disease, drug abuse (amphetamine, cocaine, etc.), and even for gambling and sex-disorders. However, dopamine is metabolized on a subsecond timescale, and studies have pointed to the importance of neurotransmitter metabolites in these disease states apart from dopamine. Presently, there is no method to selectively co-detect these neurotransmitter metabolites of dopamine utilizing FSCV. Through several waveform modifications and polymer electrode coatings, we develop a novel method to tune the detection of dopamine and said metabolites, which will help differentiate dopamine and respective metabolites through the shapes and positions of their respective cyclic voltammograms. Preliminary measurements have also been made in zebrafish whole brain ex vivo showing the application of this technique in biological tissue. Discriminating the detection of dopamine from its metabolites will have many implications in better understanding complex disease, behavioral, and pharmacological states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call