Abstract
Among the three primary colors, blue emission in organic light-emitting diodes (OLEDs) are highly important but very difficult to develop. OLEDs have already been commercialized; however, blue OLEDs have the problem of requiring a high applied voltage due to the high-energy of blue emission. Herein, an ultralow voltage turn-on at 1.47 V for blue emission with a peak wavelength at 462 nm (2.68 eV) is demonstrated in an OLED device. This OLED reaches 100 cd/m2, which is equivalent to the luminance of a typical commercial display, at 1.97 V. Blue emission from the OLED is achieved by the selective excitation of the low-energy triplet states at a low applied voltage by using the charge transfer (CT) state as a precursor and the triplet-triplet annihilation, which forms one emissive singlet from two triplet excitons. We found that the essential component for efficient blue emission is a smaller energy difference between the CT state and triplet exciton, accelerating the energy transfer between the two states and achieving the optimal performance by avoiding direct decay from the CT state to the ground state. Our study demonstrates that the developed OLED allows for a much longer operation lifetime than that from a typical blue phosphorescent OLED because the blue emission originates from a stable low-energy triplet exciton that avoids degrading the constituent materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.