Abstract

We focus on developing a new class of nanoscale materials for the investigation of biological entities at multiple length scales, from the molecular level to complex cellular networks. Our highly flexible bottom-up nanomaterials synthesis capabilities allow us to form unique hybrid-nanomaterials. Recently, we have demonstrated highly controlled synthesis of 3D out-of-plane single- to few-layer fuzzy graphene (3DFG) on a Si nanowire (SiNW) mesh template. By varying graphene growth conditions, we control the size, density, and electrical properties of the NW templated 3DFG (NT-3DFG). This flexible synthesis inspires formation of complex hybrid-nanomaterials with tailored optical and electrical properties to be used in biosensing, and energy-related research. The exceptional synthetic control and flexible assembly of nanomaterials provide powerful tools for fundamental studies and applications in life science and open up the potential to seamlessly merge either nanomaterials-based platforms or unique nanosensor geometries and topologies with cells, fusing nonliving and living systems together.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call