Abstract

Next generation of energy storage devices may largely benefit from fast and solid Li+ ceramic electrolyte conductors to allow for safe and efficient batteries and fast data calculation. For those applications, the ability of Li-oxides to be processed as thin film structures and with high control over Lithiation and phases at low temperature is of essence to control conductivity. Through this presentation we review the field from a new angle, not only focused on the classics such as Li-ionic transport and electrochemical stability window for Li-solid state battery electrolytes, but focusing on opportunities and challenges routes in thermal and ceramic processing of the components and their assemblies with electrodes. Also, we will carefully review and give perspectives on the role of solid state battery ceramic strategies for the electrolyte on the electrode interfaces and towards charge transfer and vs. current densities. In other words, it will be a little ceramicist (own) love story on the good and the evil we can design by smart ceramic design at the interfaces originating by the very first choices made in the electrolyte ceramic structure and material design. In the second part of the talk we will discuss new opportunities on low temperature processing of solid state electrolyte ceramics that do not technically require “classic sintering” and avoid prior particle calcination; instead demonstrating opportunities to use liquid based direct densification routes and vacuum techniques to design solid electrolytes and grafting interfaces to new hybrid and solid state battery prototypes targeted at processing below 700C for all parts. Collectively, the insights on solid state energy storage provide evidence for the functionalities that those Li-solid state material designs can have for cost and mass manufacturable solid state and hybrid battery prototypes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.