Abstract

Surface Tamm states arise in one-dimensional lattices from some defects at the lattice edge and their energy generally falls in a gap of the crystal. The defects at the surface change rather generally the phase of propagative Bloch waves scattered off at the lattice edge, so that an observer, far from the surface, can detect the existence of edge defects from e.g. time-of-flight measurements as a delay or an advancement of a Bloch wave packet. Here we show that a special class of defects can sustain surface Tamm states which are invisible, in a sense that reflected waves acquire the same phase as in a fully homogeneous lattice with no surface state. Surface states have an energy embedded into the tight-binding lattice band and show a lower than exponential (algebraic) localization. Like most of bound states in the continuum of von Neumann - Wigner type, such states are fragile and decay into resonance surface states in presence of perturbations or lattice disorder. The impact of structural lattice imperfections and disorder on the invisibility of the defects is investigated by numerical simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call