Abstract

In this paper we study the present and future sensitivities of the rare meson decay facilities KOTO, LHCb and Belle II to a light dark sector of the minimal dark abelian gauge symmetry where a dark Higgs S and a dark photon ZD have masses ≲ 10 GeV. We have explored the interesting scenario where S can only decay to a pair of ZD’s and so contribute to visible or invisible signatures, depending on the life-time of the latter. Our computations show that these accelerator experiments can access the dark Higgs (mass and scalar mixing) and the dark photon (mass and kinetic mixing) parameters in a complementary way. We have also discussed how the CMS measurement of the SM Higgs total decay width and their limit on the Higgs invisible branching ratio can be used to extend the experimental reach to dark photon masses up to ~ 10 GeV, providing at the same time sensitivity to the gauge coupling associated with the broken dark abelian symmetry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call