Abstract

The Huangshan orogenic-type gold deposit in Zhejiang of SE China occurred in quartz–pyrite veins. It is hosted by phyllonite that underwent greenschist-facies metamorphism along a large Jiangshan–Shaoxing tectonic belt with a NE–SW direction. Trace elemental characteristics, ore-forming process and invisible gold on different forms of pyrite and quartz are studied. The Au associated pyrite can be classified into two categories; recrystallized pyrite and euhedral pyrite. The precipitation of invisible Au on pyrite is mainly derived by Co and Ni with AuHS2 − complex in the mineralizing fluids in different events. The XPS results revealed that valence states of Au3+ replaced 2Fe2+ in the pyrite and Au0 replaced Si4+ in the quartz structure. The electron paramagnetic resonance and trace elemental results suggested that the element pairs of Ge–Li–Al in quartz and Mn–Co–Ni in pyrite have distinct impurities as identified. A fluid inclusion study showed that the auriferous quartz is characterized by low-saline and CO2-rich fluids. Coexistence of the type I–type III inclusions and same range of homogenization temperature with different mode are evidences of immiscible fluid process. The temperature–pressure values of ca. 250 °C/1250 bar and ca. 220 °C/780 bar for gold precipitation have been calculated by intersection of coexisting fluids during the entrapment. The Huangshan orogenic-type gold deposit may be associated with the Wuyi–Yunkai orogeny during the early Paleozoic, including an upper–mid greenschist-facies metamorphism (450–420 Ma). All the features suggest that the Huangshan gold deposit is probably a product linking with the early Paleozoic orogeny in South China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call