Abstract
The effect of thermal radiation is investigated for the axisymmetric flow over the blunt body associated with a given paraboloidal shock wave. Radiative transfer is treated by means of the differential approximation, which applies to multidimensional flow and is valid throughout the entire range of temperature and optical thickness. The gas is assumed to be perfect and optically grey, and molecular-transport processes are neglected. A semi-analytical solution for the flow and radiation fields is obtained by the method of series truncation.Results are presented, in the strong-shock approximation, for various values of the appropriate dimensionless variables. In general, radiation is found to have a significant influence on temperature and density, moderate effect on velocity, and little effect on pressure. The stand-off distance between the shock wave and the body is found to decrease significantly with increasing radiation; the body shape is less affected. The anomalous behaviour of the gas temperature on the body streamline as obtained by earlier investigators in the optically thin case does not appear in the present work. The results thus show correct physical behaviour throughout the flow field for all values of optical thickness. The detailed flow quantities exhibit a number of features of multidimensional radiating flow. They also provide a check on the special assumptions made in other, more approximate treatments. Similarities between radiating flow and non-equilibrium reactive flow over blunt bodies are apparent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.