Abstract
An analysis of the exact equations of the inviscid flow of a perfect gas over cusped concave bodies is described. The field is examined in the limit of infinite free-stream Mach numberM∞. The slope of the shock wave in a small region adjacent to the leading edge is strongly dependent onM∞, while much further downstream the shock-wave slope is controlled primarily by the body slope. Consequently the region near the leading edge introduces into the field downstream a thin layer of gas, adjacent to the body, where the entropy is much lower than that of the gas above it. This layer is so dense that the gas velocity along it is not appreciably slowed by the pressure gradient along the body. However, it is so thin that there is little pressure change across it.The well-known self-similar solutions to the hypersonic small-disturbance equations have previously only been used to study the flow on blunted slender convex surfaces. They are known to behave singularly at the body. It is shown that there is a region on concave power-law shapes where the self-similar solutions are the correct first approximation to the exact inviscid equations in the limitM∞→ ∞; and that, further, they predict the correct first-order surface pressure.Numerical results for surface pressure from the similar solutions are presented, and comparisons are made with certain approximate theories available for more general shapes. Pressure measurements taken on a cubic surface in the Imperial College gun tunnel are presented and compared with the theoretical distributions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.