Abstract

We prove asymptotic stability of shear flows in a neighborhood of the Couette flow for the 2D Euler equations in the domain $\T\times[0,1]$. More precisely we prove that if we start with a small and smooth perturbation (in a suitable Gevrey space) of the Couette flow, then the velocity field converges strongly to a nearby shear flow. The vorticity, which is initially assumed to be supported in the interior of the channel, will remain supported in the interior of the channel, will be driven to higher frequencies by the linear flow, and will converge weakly to $0$ as $t\to\infty$, modulo the shear flows (zero mode in $x$).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.