Abstract

The inviscid evolution of elliptical, nonuniform vorticity distributions is studied computationally using a high resolution Lagrangian (vortex) method with minimal numerical dissipation. The simulations reveal that the vortices evolve, through a process of filamentation, to a configuration consisting of a vortex surrounded by weak filamentary structures. The shape of the final configuration depends on the profile of the initial vorticity distribution. For the same ellipticity, relatively smooth profiles evolve to axisymmetric vortical structures, whereas sharper initial vorticity distributions result in robust non-axisymmetric configurations. A systematic convergence study is conducted to establish the accuracy of the method for long time inviscid simulations. To further assess the issue of axisymmetrization we compare our results with related numerical and experimental studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.