Abstract

Interest in prescribed fire science has grown over the past few decades due to the increasing application of prescribed fire by managers to mitigate wildfire hazards, restore biodiversity, and improve ecosystem resilience. Numerous ecological disciplines use prescribed fire experiments to provide land managers with evidence-based information to support prescribed fire management. Documenting variation in the context and conditions during prescribed fire experimental treatments is critical for management inference, but inconsistencies in reporting critical experimental details can complicate interpretation. Such details are needed to provide ecological and empirical context for data, facilitate experimental replication, enable meta-analyses, and maximize utility for other scientists and practitioners. To evaluate reporting quality in the recent literature, we reviewed 219 prescribed fire experiments from 16 countries published in 11 refereed journals over the last 5 years. Our results suggest substantial shortcomings in the reporting of critical data that compromise the utility of this research. Few studies had specific information on burning conditions such as fuel moisture (22%), quantitative fuel loads (36%), fire weather (53%), and fire behavior (30%). Further, our analysis revealed that 63% of the studies provided precise coordinates for their study area, while 30% of studies indicated the prescribed fire date. Only 54% of the studies provided descriptions of the ignition characteristics. Given these common deficiencies, we suggest minimum reporting standards for future prescribed fire experiments. These standards could be applied to journal author guidelines, directed to researchers and reviewers by the editor, and promoted in the education of fire ecologists. Establishing reporting standards will increase the quality, applicability, and reproducibility of prescribed fire science, facilitate future research syntheses, and foster actionable science.

Highlights

  • Across a diversity of terrestrial ecosystems, prescribed fire is commonly used to achieve a wide variety of land management objectives, including increasing biodiversity, improving wildlife habitat, and reducing woody encroachment, invasive species, and fuel and fire hazards (Fernandes and Botelho, 2003; Ryan et al, 2013; Stephens et al, 2021)

  • Based on the results of this literature review, we propose a set of minimum reporting guidelines for prescribed fire experiments in ecology and other related disciplines

  • We were not able to identify the reasons for the lack of reporting, our collective experience is that much of the data required to meet these recommendations is often collected during prescribed fires, indicating that a lack of reporting could be because data was not transferred from managers to researchers or was disregarded during manuscript preparation or revision

Read more

Summary

Introduction

Across a diversity of terrestrial ecosystems, prescribed fire is commonly used to achieve a wide variety of land management objectives, including increasing biodiversity, improving wildlife habitat, and reducing woody encroachment, invasive species, and fuel and fire hazards (Fernandes and Botelho, 2003; Ryan et al, 2013; Stephens et al, 2021). Prescribed fire and its effects are influenced by a complex suite of interactions between the burning environment (e.g., fuels, fire weather, and topography), ignition characteristics, attributes of the specific organisms and ecosystems being studied, and a host of other moderating effects, including legacies of past disturbances, climatic conditions, soils, and land management practices (O’Brien et al, 2018). Given this complexity and the time constraints faced by managers, it can be challenging to critically evaluate, interpret, and apply what often appear to be contradictory findings among scientific studies. Given the increased recommendations for prescribed fire use along with a paucity of prescribed fire research in many ecosystems, there is a need for research that improves our understanding of the underlying mechanisms driving the ecological effects of prescribed fires (O’Brien et al, 2018; Hiers et al, 2020)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call