Abstract
In this paper, I propose a genetic learning approach to generate technical trading systems for stock timing. The most informative technical indicators are selected from a set of almost 5000 signals by a multi-objective genetic algorithm with variable string length. Successively, these signals are combined into a unique trading signal by a learning method. I test the expert weighting solution obtained by the plurality voting committee, the Bayesian model averaging and Boosting procedures with data from the S&P 500 Composite Index, in three market phases, up-trend, down-trend and sideways-movements, covering the period 2000–2006. Computational results indicate that the near-optimal set of rules varies among market phases but presents stable results and is able to reduce or eliminate losses in down-trend periods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.