Abstract
Li3V2(PO4)3/C (LVP/C) composites have been modified by different ways of Zr-incorporation via ultrasonic-assisted solid-state reaction. The difference in the effect on the physicochemical properties and the electrochemical performance of LVP between Zr-doping and ZrO2-coating has also been investigated. Compared with pristine LVP/C, Zr-incorporated LVP/C composites exhibit better rate capability and cycling stability. In particular, the LVP/C-Zr electrode delivers the highest initial capacity of 150.4 mA h g-1 at 10C with a capacity retention ratio of 88.4% after 100 cycles. The enhanced electrochemical performance of Zr-incorporated LVP/C samples (LVZrP/C and LVP/C-Zr) is attributed to the increased ionic conductivity and electronic conductivity, the improved stability of the LVP structure, and the decreased charge-transfer resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.