Abstract

Recently, lots of oscillating targets inspired from motions of some insects and birds have been applied extensively to many engineering applications. The aim of this work is to reveal the performance and detailed flow structures over the pitching corrugated hydrofoils under various working conditions, using the SST [Formula: see text] transition model. First of all, the lift coefficients of a smooth oscillating airfoil at different reduced frequency and pitching angles show a good agreement with the experiments, characterized by the accurate prediction of the light and deep stall. For the pitching corrugated hydrofoils, it shows that the mean lift coefficient increases with the pitching magnitude, but it has an obvious drop at high reduced frequency for the case with large pitching amplitude, which is mainly induced by the pressure modification on the surface with smooth curvature, depending on the oscillation significantly. In addition, the mean drag coefficient also indicates that the drag turns into the thrust at high reduced frequency when the pitching amplitude exceeds to the value of 10°. Increasing the reduced frequency delays the flow structure and leads to the deflection of the wake vortical flow. The Reynolds number also has an impact on the hydrofoil performance and wake morphology. Furthermore, regarding the shape effect, it seems that hydrofoil A (consisting of two protrusions and hollows and the aft part with smooth curvature) achieves the higher lift than hydrofoil B (comprising several protrusions and hollows along the surface), specially at high reduced frequency. Although the frequency collected from two hydrofoils remains nearly the same near the leading edge and in the wake region, the high sub-frequency is evidently reduced for hydrofoil B in second and third hollows, due to the relatively stable trapped vortices. Then, the wake transition from the thrust-indicative to drag-indicative profile for hydrofoil B is also slower compared with hydrofoil A. Finally, it is observed that with the increase of the thickness, the lift/drag ratio decreases and the slow wake transition is detected for the thin hydrofoil, which is associated with the relatively low drag coefficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call