Abstract

This paper investigates the transverse and planar vibration characteristics of two-layered piezoceramic disks for traction-free boundary conditions by theoretical analysis, finite element numerical calculation, and experimental measurements. Amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI), laser Doppler vibrometer (LDV), and impedance analysis were used to perform measurements and verify the theoretical solutions for extensional, tangential, and transverse vibrations. The poling direction of piezoelectric elements determines whether they are denoted as either of series- or parallel-type. This study observed that the resonant frequencies and mode shapes of the series- and parallel-type piezoceramic disks present different dynamic characteristics in resonance. Planar and transverse vibrations are coupled in series-type piezoceramic disks and uncoupled in those of parallel-type. Good agreements of dynamic characteristics determined by theoretical analysis, experimental measurements, and numerical calculation are presented for series- and parallel-type piezoceramic disks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call