Abstract

Dust emissions must be managed and reduced as much as possible to safeguard the environment and human health. Plate-type electrostatic precipitators have been used to decrease pollution in a number of sectors, particularly for applications needing massive volumes of gas to be dedusted at high dust concentrations and temperatures. This paper examines large-capacity plate-type electrostatic precipitators with three sections used in a coal-fired thermal power plant. Using simulations and experiments, the collection efficiency (in different ways of supplying sections, without and with sections rapping), the influence of dust resistivity and a dust layer on the surfaces of collection electrodes, the electrical parameters (voltage, current density, and space charge density) for the sections of the electrostatic precipitators, and the electrical parameters of the power sources (voltage, current, power, and power factor) are studied. A higher dust resistivity will cause a change in the shape of the voltage delivered to the sections, an increase in the average voltage from sections, and a decrease in collecting efficiency (by a few percent). A greater degree of intermittence alters the current-voltage characteristics of the sections, decreases the current across the sections, and improves collection efficiency. The density of space charges increases with the degree of intermittency and is highest at the input section. With increasing thickness of the dust layer on the collection electrodes, the collection efficiency increases. PM10 dust particles (which have a lower migration speed) are the hardest to collect with ESPs. When the sections are rapping, PM 20–30 dust particles are more difficult to collect because their migration speeds decrease significantly (compared to the situation when the sections are not rapping). The operation of the power sources of the ESP sections is dynamic, being controlled by the regulators, and the current (or current density), depending on the voltage characteristics, changes permanently (at intervals of a few seconds). The power sources of the sections are deforming consumers (the current is much different from the sinusoidal form).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call