Abstract

The paper describes issues related to the use of dilatometric methods for the study of thermo-mechanical properties of PVD gradient coatings. Tests were conducted on three types of CrCN / CrN coatings, which differed in the nature of the change of physico-chemical parameters in the gradient transition layer, deposited on a molybdenum substrate with the use of the cathodic arc evaporation method. The scope of the experimental studies included an analysis of the changes of the thermal “extortion” of the substrate – PVD coating system during annealing processes. In parallel, for comparison purposes, a mathematical description was proposed of gradient coatings containing the transition functions of material parameters. These functions describe the changes of such parameters as the Young's modulus, the Poisson's ratio, the thermal expansion coefficient, and the density as a function of spatial variables. Using the mathematical description proposed, numerical calculations of the state of thermal stress and strain for coatings are represented, respectively, by the transition function forms (a stepped, square, and square root) were carried via FEM. Based on the experimental and computational results obtained, the comparison between the elongation of the tested samples, and the state of thermal stress and strain in the substrate-gradient coating systems analysed were all specified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call