Abstract

AbstractReaction of CdII and ZnII thiocyanate with 3‐acetylpyridine leads to the formation of the new CdII and ZnII coordination compounds [Cd(NCS)2(3‐acetylpyridine)4] (1A), [Cd(NCS)2(3‐acetylpyridine)2]n (1B), [Cd(NCS)2(3‐acetylpyridine)]n (1C) and [Zn(NCS)2(3‐acetylpyridine)2] (2A). Compound 1A consists of discrete complexes, in which the metal centers are octahedrally coordinated by four terminal bonded N‐donor co‐ligands and two terminal N‐bonded thiocyanato anions. In compound 2A the metal centers are only tetrahedrally coordinated by two terminal bonded N‐donor co‐ligands and two terminal N‐bonded thiocyanato anions. In compound 1B the CdII cations are octahedrally coordinated by two terminal bonded N‐donor co‐ligands and four thiocyanato anions. The metal centers are linked by μ‐1, 3 bridging thiocyanato anions into chains. In compound 1C the metal cations are octahedrally coordinated by two μ‐1, 5 bridging 3‐acetyl‐pyridine ligands and four μ‐1, 3 bridging thiocyanato anions building up a three‐dimensional coordination network. Investigations on the thermal degradation behavior of all compounds using simultaneous differential thermoanalysis and thermogravimetry as well as X‐ray powder diffraction and IR spectroscopy prove that on heating compound 2A decompose without the formation of 3‐acetylpyridine‐deficient intermediates. In contrast, for compound 1A a stepwise decomposition is observed, leading to the formation of the 3‐acetylpyridine‐deficient compound [Cd(NCS)2(3‐acetylpyridine)2]n (1B) which decomposes on further heating

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call