Abstract

The present work is to examine the failure modes and failure loads in pin joints prepared from carbon/epoxy composite laminates with addition of multiwalled carbon nanotubes (MWCNT) as nanofillers. The effect of MWCNT in the carbon/epoxy composites was studied by adding 0.1 to 0.5 wt.% content in the epoxy resin. The maximum tensile strength was observed upto 0.3 wt.%, which is due to the enhanced interfacial bond strength and the efficient stress transfer between the stiff MWCNT and soft polymer matrix through refined polymer/MWCNT interface. The nanocomposite laminates for pin joints were prepared using optimised 0.3 wt.% of MWCNT. The different geometric combinations of width to diameter (W/D) and edge to diameter (E/D) ratios were varied from 2 to 5, respectively. The numerical analysis was performed using Hashin damage criteria along with progressive damage analysis to compare the predicted failure loads with the experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call