Abstract
Matrix insertion-deletion systems combine the idea of matrix control (a control mechanism well established in regulated rewriting) with that of insertion and deletion (as opposed to replacements). Given a matrix insertion-deletion system, the size of such a system is given by a septuple of integers $$(k;n,i',i'';m,j',j'')$$ . The first integer k denotes the maximum number of rules in (length of) any matrix. The next three parameters $$n,i',i''$$ denote the maximal length of the insertion string, the maximal length of the left context, and the maximal length of the right context of insertion rules, respectively. The last three parameters $$m,j',j''$$ are similarly understood for deletion rules. In this paper, we improve on and complement previous computational completeness results for such systems, showing that matrix insertion-deletion systems of size (1) (3; 1, 0, 1; 1, 0, 1), (3; 1, 0, 1; 1, 1, 0), (3; 1, 1, 1; 1, 0, 0) and (3; 1, 0, 0; 1, 1, 1) (2) (2; 1, 0, 1; 2, 0, 0), (2; 2, 0, 0; 1, 0, 1), (2; 1, 1, 1; 1, 1, 0) and (2; 1, 1, 0; 1, 1, 1), are computationally complete. Further, we also discuss linear and metalinear languages and we show how to simulate grammars characterizing them by matrix insertion-deletion systems of size (3; 1, 1, 0; 1, 0, 0), (3; 1, 0, 1; 1, 0, 0), (2; 2, 1, 0; 1, 0, 0) and (2; 2, 0, 1; 1, 0, 0). We also generate non-semilinear languages using matrices of length three with context-free insertion and deletion rules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.