Abstract

In this work, combined time-resolved spectroscopies of femtosecond transient absorption, nanosecond transient absorption, and DFT calculations were performed to unravel the photocyclization reaction mechanisms of selected dibenzoylmethane (DBM) derivatives, including 2-chloro-1,3-diphenylpropan-1,3-dione (1a), 2-chloro-1-(3,5-dimethoxyphenyl)-3-phenylpropan-1,3-dione (1b), 2-chloro-2-fluoro-1,3-diphenylpropan-1,3-dione (1c), and 2-chloro-2-fluoro-1,3-di(4-methoxyphenyl)propan-1,3-dione (1d). Photocyclization reaction mechanisms for 1a and 1b are similar, where a C-Cl heterolysis occurs yielding an α-ketocation intermediate, followed by cyclization to generate the cation species. On the other hand, 1c and 1d undergo dechlorination primarily producing a radical species, which further experiences cyclization yielding cyclized radical species. The dominant factor leading to the different reaction mechanisms is the involvement of a fluorine atom bonded at α-C. Due to the meta-effect, the p-methoxy substitution on the benzene ring inhibits the photocyclization reaction and reduces the yield of photocyclization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.