Abstract

The carbohydrate content of an A myeloma globulin was investigated. The carbohydrate content was found to be unchanged when the protein was isolated from the patient over a period of 18 months. The various polymeric forms of the protein contained similar proportions of carbohydrate. The A myeloma globulin contained approx. 2 residues of 6-deoxy-l-galactose (l-fucose), 14-15 of d-mannose, 12-13 of d-galactose, 12-13 of 2-acetamido-2-deoxy-d-glucose (N-acetyl-d-glucosamine), 6 of 2-acetamido-2-deoxy-d-galactose (N-acetyl-d-galactosamine) and 5 of N-acetylneuraminic acid (sialic acid), and these were distributed between six oligosaccharide units all of which were present on the heavy polypeptide chains. The oligosaccharide units showed two kinds of heterogeneity, which have been termed central and peripheral. Central heterogeneity was shown by the presence of three completely different core units, which had the following compositions: (1) 3 residues of d-galactose and 3 of 2-acetamido-2-deoxy-d-galactose, joined to protein by an O-glycosidic linkage between acetamidohexose and serine; (2) 3 residues of d-mannose, 2 of d-galactose and 3 of 2-acetamido-2-deoxy-d-glucose, joined to protein by an N-glycosidic linkage between acetamidohexose and aspartic acid; (3) 4 residues of d-mannose and 3 of 2-acetamido-2-deoxy-d-glucose with a linkage similar to that in (2). The core oligosaccharide units showed peripheral heterogeneity in the attachment of 6-deoxy-l-galactose, 2-acetamido-2-deoxy-d-glucose and N-acetylneuraminic acid. Tentative structures are proposed for these various types of oligosaccharide unit. Glycopeptides were isolated in which the sialic acid content exceeded that of d-galactose. Explanations are given for the electrophoretic mobility and staining characteristics of the various glycopeptides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call