Abstract

Vanadium slag contains high contents of vanadium and chromium with complex and dense structures, hence microwave heating instead of conventional methods is expected to destroy the dense structure and further to improve the extraction rate of vanadium and chromium, and exploring its dielectric properties is the prerequisite work. Microwave absorption properties and thermal behavior of vanadium slag were investigated. Results indicated that vanadium slag endowed excellent microwave absorption properties, with minimum εr′ value of 34.447 (F/M). Dielectric properties of vanadium slag varied with temperature, which changing trend was matched to the three stages of microwave heating characteristics identified by heating rates. Meanwhile, the changing process of dielectric properties also corresponded to the three processes of thermogravimetric characteristics: dehydration stage (30 °C–280 °C), oxidation decomposition of olivine phase and normal spinel phase (280 °C–650 °C), and oxidation decomposition of vanadium chromium spinel (650 °C–950 °C). Moreover, the maximum dielectric constant and highest microwave heating rate of vanadium slag both appeared at the temperature regime of 500 °C–550 °C, which was also the main temperature regime for oxidation decomposition of olivine phase and normal spinel phase in vanadium slag, demonstrating the appropriate process temperature for microwave heating technology to recycle vanadium slag.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.