Abstract

Friction welding process is a solid state joining process that produces a weld under the compressive force contact of one rotating and one stationary work piece. In this study, the friction welding of dissimilar joints of AISI 316L stainless steel and cp-titanium is considered. The optical, scanning electron microscopy studies of the weld were carried out. Moreover, the X-ray diffraction analysis was performed. The integrity of welds was achieved by the micro hardness and tensile tests. The fracture surface was examined by the scanning electron microscopy. The study showed that the magnitude of tensile strength of the dissimilar welded specimen was below that of the titanium base material if preheating was not applied at the interface. The high weld tensile strength was achieved by preheating the 316L stainless steel material to 700 °C, smoothing and cleaning of the contact surfaces. Results illustrated that in dissimilar joints, different phases and intermetallic compounds such as FeTi, Fe 2Ti, Fe 2Ti 4O, Cr 2Ti and sigma titanium phase were produced at the interface. The presence of brittle intermetallic compounds at the interface resulted in degradation of mechanical strength which in turn led to premature failure of joint interface in the service condition. Preheating caused to produce oxide layer at the interface which was harmful for bonding. The oxide layer could be eliminated by applying pressure and smoothing the surface. Results of hardness tests illustrated that the high hardness was occurred in the titanium side adjacent to the joint interface. Moreover, the optimum operational parameters were obtained in order to achieve the weld tensile strength greater than the weak titanium material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call