Abstract

In the present study, the interaction of 5-Fluorouracil with herring sperm DNA is reported using spectroscopic and molecular modeling techniques. This binding study of 5-FU with hs-DNA is of paramount importance in understanding chemico–biological interactions for drug design, pharmacy and biochemistry without altering the original structure. The challenge of the study was to find the exact binding mode of the drug 5-Fluorouracil with hs-DNA. From the absorption studies, a hyperchromic effect was observed for the herring sperm DNA in the presence of 5-Fluorouracil and a binding constant of 6.153 × 103M-1for 5-Fluorouracil reveals the existence of weak interaction between the 5-Fluorouracil and herring sperm DNA. Ethidium bromide loaded herring sperm DNA showed a quenching in the fluorescence intensity after the addition of 5-Fluorouracil. The binding constants for 5-Fluorouracil stranded DNA and competitive bindings of 5-FU interacting with DNA–EB systems were examined by fluorescence spectra. The Stern–Volmer plots and fluorescence lifetime results confirm the static quenching nature of the drug-DNA complex. The binding constant Kbwas 2.5 × 104L mol-1and the number of binding sites are 1.17. The 5-FU on DNA system was calculated using double logarithmic plot. From the Forster nonradiative energy transfer study it has been found that the distance of 5-FU from DNA was 4.24 nm. In addition to the spectroscopic results, the molecular modeling studies also revealed the major groove binding as well as the partial intercalation mode of binding between the 5-Fluorouracil and herring sperm DNA. The binding energy and major groove binding as -6.04 kcal mol-1and -6.31 kcal mol-1were calculated from the modeling studies. All the testimonies manifested that binding modes between 5-Fluorouracil and DNA were evidenced to be groove binding and in partial intercalative mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call