Abstract

The third generation enhanced heat transfer technologies, such as three-dimensional fin and dimple, are still important means of improving energy efficiency and will continue to be challenging issues. This paper concentrates on the analysis of the condensation heat transfer performance of an edge-shaped finned-tube fabricated by extrusion–ploughing process. Experimental results show that the overall heat transfer coefficient increases with increases of volumetric flow rate of cold water and heat flux whereas the shell side heat transfer coefficient decreases with volumetric flow rate and heat flux increasing. At the similar volumetric flow rate, the shell side heat transfer coefficient of the edge-shaped finned-tube is 4–6 times larger than that of the smooth tube. At the similar volumetric flow rate, the shell side heat transfer coefficient of edge-shaped finned-tube increases with ploughing depth increasing. At the same temperature difference between wall and vapor, the shell side heat transfer coefficient is also higher than what had been reported in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.