Abstract

The hardness and microstructure of friction stir welded (FSW) 6082 aluminum alloy joint were investigated by Vickers microhardness test, optical microscopy (OM), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The hardness distribution is in a W shape, and from the base metal to the heat affected zone (HAZ) the hardness decreases from 103 HV to 72 HV, then gradually increases to 84 HV at the nugget zone (NZ). The grains of base metal (BM) are elongated and composed of a great quantity of low-angle grain boundaries. The nugget zon was of quite fine recrystallized grains. For the thermomechanical affected zone (TMAZ), the grain size is a little smaller than that of base metal and some low-angle grain boundaries remain. In the heat affected zone, the grain size was similar to that of the base metal. The β'' phase (Mg5Si6) and Al-Mn-Si particles are dispersed in the base metal. . In the heat affected zone, β'' phase transforms to β' phase (Mg9Si5). The hardness distribution in a W-shape was discussed on the basis of grain size, density of low-angle grain boundary and secondary phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call