Abstract

In this work, we systematically studied the spectroscopic characteristics of Yb3+ doped germanate, phosphate, silicate, and tellurite glasses. The emission peak beyond 976 nm showed irregular shift from 1001 nm to 1023 nm when Yb3+ in different glass matrices. It was associated with the Stark splitting of 2F7/2 and the emission intensities ratio between the transition from the lowest Stark splitting energy level of 2F5/2 to the Stark splitting energy levels of 2F7/2, e to b and that of e to d. Larger Stark splitting of 2F7/2 results in the red-shift of the near infrared emission band at room temperature and larger ratio results in the blue-shift of emission band. The fluorescence lifetimes of Yb3+ doped germanate, phosphate, silicate, and tellurite glasses were measured to be 0.94, 0.82, 1.51, and 0.66 ms, respectively. The fluorescence lifetime was associated with the reabsorption of Yb3+, which larger absorption cross section at the emission band results in larger reabsorption, then leads to the shorter near infrared fluorescence lifetime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.