Abstract
This paper presents experimental and numerical investigations on the effect of ultrasonic vibration on cylindrical cup drawing processes of a cold rolled steel sheet (SPCC). An experimental apparatus to superimpose high frequency oscillation on deep drawing processes was constructed by installing ultrasonic vibration generators consist of piezoelectric transducer and resonator to the die. Conventional and vibration-assisted cylindrical deep drawing tests were carried out for various drawing ratios, and the limiting drawing ratio (LDR) was compared. In order to evaluate the contribution of ultrasonic vibration to the reduction of friction between tools and a material quantitatively, finite element analyses were carried out. Through a series of parametric analyses, friction coefficients which minimize the differences of punch load histories between the experiment and simulation were determined. The results showed that the application of ultrasonic vibration make for improving LDR by reducing the friction between tools and the material, effectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.