Abstract

We investigate the minimum-energy path for the rotation of formal C=N double bonds in molecules with guanidine-like substructures as present in the chemical class of neonicotinoids. The transitions between the E- and Z-isomers of several neonicotinoids using scans of the torsional potential energy hypersurfaces are quantified at the DFT-level of theory. The validity of using this ansatz is checked by single-point CCSD(T) calculations for model systems like nitroguanidine. A combined approach of theory and experiment permits to unambiguously identify the relevant isomers present at ambient conditions. As an example, MP2-GIAO predictions of the NMR spectra of E- and Z-Clothianidin are experimentally confirmed by low-temperature NMR-experiments identifying for the first time the hitherto unknown Z-Isomer of Clothianidin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.