Abstract

Investigations using insect cell microsomes with cDNA-expressed human cytochrome P450 (CYP)s and human liver microsomes (HLM) are reported on the CYP isoenzymes involved in the metabolism of the designer drugs N-(1-phenylcyclohexyl)-2-ethoxyethanamine (PCEEA) to O-deethyl PCEEA and N-(1-phenylcyclohexyl)-2-methoxyethanamine (PCMEA) to O-demethyl PCMEA. Gas chromatography–mass spectrometry or liquid chromatography–mass spectrometry was used for the analysis of the incubation samples. PCEEA O-deethylation was catalyzed by CYP2B6, CYP2C9, CYP2C19, and CYP3A4, while PCMEA O-demethylation was catalyzed only by CYP2B6 and CYP2C19. Considering the relative activity factor approach, these enzymes accounted for 53%, 25%, 4%, and 18% of net clearance for PCEEA and 91% and 9% of net clearance for PCMEA, respectively. The chemical CYP2B6 inhibitor 4-(4-chlorobenzyl)pyridine (CBP) reduced the metabolite formation in pooled HLM by 63% at 1 μM PCEEA. At 10 μM PCEEA, CBP reduced metabolite formation by 61%, while inhibition of CYP3A4 by ketoconazole and inhibition of CYP2C9 by sulfaphenazole showed no inhibitory effect. At 1 μM PCMEA, CBP reduced metabolite formation in pooled HLM by 70% and at 10 μM PCMEA by 78%, respectively. In conclusion, the main metabolic step of both studied drugs was catalyzed by different CYPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.