Abstract

Thermosetting polymer blends composed of bisphenol A based benzoxazine (BA-a) and cyanate ester (BACY) were prepared via co-curing of benzoxazine with cyanate ester. DSC results manifested a multiple curing pattern with associated heat of reaction implying a co-reaction between oxazine moiety and cyanate group. The catalysis during the co-curing of blend was ascribed to the cycloaddition reaction between the two groups followed by the ring-opening of benzoxazine and cyclotrimerisation of cyanate ester. The spectral and analytical data supported the possibilities of further polymerization through the insertion of the phenolic OH of polybenzoxazine to cyanate group to form the intermediate iminocarbonate, which further induce curing of cyanate ester to form polycyanurate. A co-reacted network composed of triazine ring as a part of polybenzoxazine matrix is postulated. The co-reaction temperature diminished with increase in cyanate ester content in the blend. A single T g was observed in DMTA of the cured matrix that implied a linked homogeneous matrix containing both triazine and polybenzoxazine. This was substantiated by the TGA, DTA and SEM behavior of the cured polymer. The modulus of the cured blend was higher than those of the component resins of the blend. The co-reaction with cyanate ester enhanced the high temperature stability of polybenzoxazine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call