Abstract

The conditional metal availability and the kinetic stability of humic substance-metal species in humic-rich waters (e.g. bog water) was characterized by means of EDTA exchange. For this purpose a combined procedure consisting of time-controlled ligand exchange by EDTA, species differentiation by a fast single-stage tangential-flow ultrafiltration (TF-UF) technique (cut-off 1 kDa) and sensitive atomic spectrometry methods (e.g. AAS, ICP-OES, TXRF) was developed. The kinetics and the yield of the EDTA exchange served as operational parameters for assessing the kinetic stability and EDTA availability of HS–metal species, respectively. Considerable fractions of natural HS–metal species studied were shown to be EDTA-inert (e.g. 31% of the total Fe, 44% of the total Al) even after long reaction times (48 h), in contrast to artificial ones formed in solutions of isolated HS. Moreover, the conditional thermodynamic stability of HS–metal complexes formed by successive loading of an aquatic reference HS (HO14) with a number of heavy metal ions (e.g. Cr(III), Cu(II), Fe(III), Mn(II), Zn(II)) was also evaluated discriminating the free metal concentrations by means of TF-UF. In addition, from the loading isotherms obtained conditional complexation capacities could be derived for the studied HS exhibiting the order Fe(III)>>Cu(II)>Cr(III)>Co(II)>Mn(II).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.