Abstract

Magnetic nanocomposites consisting of cobalt ferrite nanoparticles embedded in silica matrix were prepared by the coprecipitation method using metallic chlorides as precursors for ferrite. Subsequently composites were annealed at 100, 200 and 300°C for 2h. The samples were structurally characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The magnetic properties were measured in the temperature range of 10–300K using vibrating sample magnetometer (VSM). The effects of thermal treatment on structural and magnetic properties of nanocomposites were investigated. When the samples were annealed, CoFe2O4 nanocrystallites were observed in the SiO2 matrix, whose size increases with increase in annealing temperature. The coercivity and saturation magnetization of nanocomposite (annealed at 300°C for 2h) are much higher than that of bulk cobalt ferrite. The realization of adjustable particle sizes and controllable magnetic properties makes the applicability of the CoFe2O4 nanocomposite more versatile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.