Abstract
In an axial flow compressor, the presence of separated flow near the hub-end of a stator would result in an overall loss in the performance. In the present paper, stator hub-stall is attempted to be eliminated for a high hub-tip ratio (0.8) axial flow compressor stage consisting of a highly loaded rotor and stator. Numerical and experimental studies on an untreated straight stator (straight-stacked, twisted) blade show a large vortex near its hub. The large vortex is attempted to be reduced by modifying the present blade by (i) providing an additional twist at the hub-end of the stator blade (ii) providing a hub-clearance (a cantilevered blade fixed from the casing). The straight (untreated) stator, hub-end-bend version and the hub-clearance version are studied for two different rotor-tip clearances. Detailed computational analysis of the variation of hub-clearance at a fixed rotor-tip clearance is also carried out. Throughout the study, experiments are carried out on the above discussed different stator (untreated & hub-treated) configurations, in combination with the same rotor, at a fixed rotor-tip clearance. The studies show that the flow conditions are improved near the hub of the highly loaded stator blade both by the hub-end-bend design and by the hub-clearance provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.