Abstract

Over the last few decades, a significant amount of research has been focused on the use of natural fibres as reinforcement in polymers, due to their intrinsic properties such as sustainability, easy availability and processing, biodegradability and moderate mechanical strength. Among natural fibres, coir is a low-cost fibre extracted from coconut palm which is extensively produced in Brazil. A full factorial design was carried out to investigate the effects of the manufacturing and composition parameters on the mechanical and physical properties of short coir fibre–reinforced composites (SCoirFRCs). The random short fibres were mixed with epoxy polymer and compacted by uniaxial pressure. The physical and mechanical responses, namely, apparent density, impact resistance, flexural strength and modulus, were investigated under a design of experiment approach. SCoirFRCs fabricated with 35% of fibre volume fraction, 375 g/m2 of fibre grammage and HY956 epoxy hardener type achieved higher flexural modulus and impact resistance, while those consisting of 30 vol% of coir fibres, HY956 type and 300 g/m2 of grammage revealed higher flexural strength. The findings revealed that the mechanical properties of SCoirFRCs are substantially dominated by the properties of the matrix phase and fibre wettability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.